3D printing is also called additive manufacturing. This term accurately describes how this technology works to create objects. "Additive" refers to the successive addition of thin layers between 16 to 180 microns or more to create an object. In fact, all 3D printing technologies are similar, as they construct an object layer by layer to create complex shapes.


Every 3D printer builds parts based on the same main principle: a digital model is turned into a physical three-dimensional object by adding material a layer at a time. This is where the alternative term Additive Manufacturing comes from.

3D printing is a fundamentally different way of producing parts compared to traditional subtractive (CNC machining) or formative (Injection molding) manufacturing technologies.

In 3D printing, no special tools are required (for example, a cutting tool with certain geometry or a mold). Instead the part is manufactured directly onto the built platform layer-by-layer, which leads to a unique set of benefits and limitations - more on this below.

The process always begins with a digital 3D model - the blueprint of the physical object. This model is sliced by the printer's software into thin, 2-dimensional layers and then turned into a set of instructions in machine language (G-code) for the printer to execute.

From here, the way a 3D printer works varies by process. For example, desktop FDM printers melt plastic filaments and lay it down onto the print platform through a nozzle (like a high-precision, computer-controlled glue gun). Large industrial SLS machines use a laser to melt (or sinter) thin layers of metal or plastic powders.

The available materials also vary by process. Plastics are by far the most common, but metals can also be 3D printed. The produced parts can also have a wide range of specific physical properties, ranging from optically clear to rubber-like objects.

Depending on the size of the part and the type of printer, a print usually takes about 4 to 18 hours to complete. 3D printed parts are rarely ready-to-use out of the machine though. They often require some post-processing to achieve the desired level of surface finish. These steps take additional time and (usually manual) effort.

No comments